### REDTOP

### <u>**R**</u>are <u>**E**</u>ta <u>**D**</u>ecays with a <u>**T**</u>PC for <u>**O**</u>ptical <u>**P**</u>hotons



<u>**R. Carosi**</u>, INFN Pisa Workshop on Physics Beyond Colliders CERN, 22 nov. 2017 For the REDTOP Collaboration

**Fermilab** 

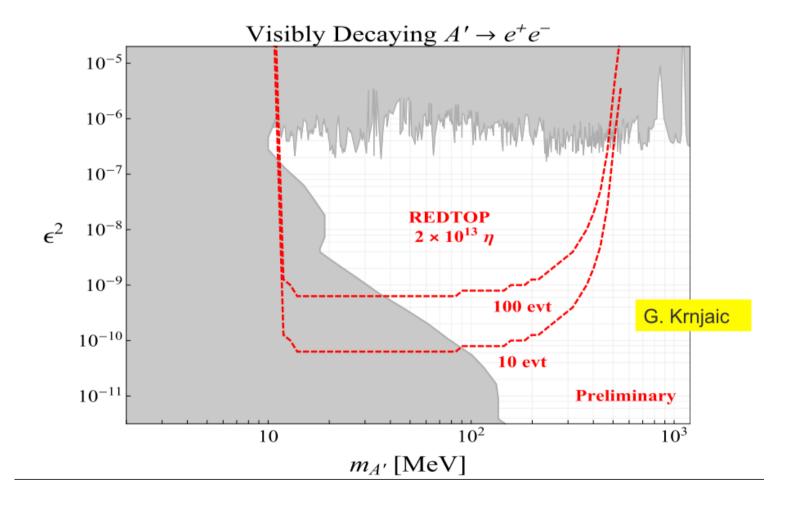


### **REDTOP Key Points**

- Yield of  $2x10^{13} \eta$  mesons/year (x-section >10 mbarns in the 2 GeV beam energy region)
  - Possibly  $2x10^{11} \eta$  mesons/years in a second phase
- $4\pi$  detector coverage (almost)
- Very small width (1.3 keV) overconstraints events  $\rightarrow$  low background
- 3 (5) "golden" channels (will be described in details in the proposal)
  - But at least ~20 interesting channels (simmetry violations, new particles and forces searches, precision measurements)
- Innovative detector techniques
  - Dual readout calorimeter
  - Optical TPC
- Detector blind to protons and slow pions
- Significant improvement (10<sup>6</sup> in some cases) to the current limits.
- http://redtop.fnal.gov

### Why the $\eta$ ?

- Decays are flavor conserving
- Eigenstate of C, P, CP and G: IGJPC=0+0-+
  - can be used to test C and CP invariances
- Very narrow state (1.3 keV)
- Strong decays forbidden in lowest order by C, P, CP, G, and Isospin invariance
- EM decays forbidden in lowest order by C and angular momentum conservation
  - contributions from higher orders are enhanced by a factor of ~100,000
  - $\eta$  decays with leptons in the final state have very small SM backgrounds
  - Internal loops and lepton pairs can probe new physics
- η is an excellent laboratory to search for physics Beyond Standard Model


### **REDTOP – Golden Channel I** *CP violation from Dalitz plot mirror asymmetry in* $\eta \rightarrow \pi^+ \pi^- \pi^0$

- J.Bijnens and K.Ghorbani, jhep11200730(2007), arXiv:0709.0230[hep-ph]; S.Gardner and J.Tandean, Phys. Rev. D69:034011, 2004, arXiv:hepph/0308228
- It is an Isopin-violating decay
- EM contributions are known to be strongly suppressed
- It can occur via Strong Interactions due to the mass difference  $m_u$ - $m_d$
- Any mirror-asymmetry in the Dalitz plot is an indication of **CP and C** violation
- Good for testing the Chiral Perturbation Theory
- Current PDG limits consistent with no asymmetry
- Largest data samples: WASA 2014 (1.2x10<sup>7</sup>), KLOE2 2016 (4.7x10<sup>6</sup>)
- REDTOP expected sample: 10<sup>9</sup> analyzed events.

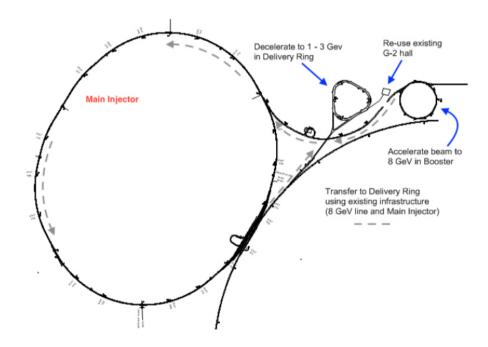
### **REDTOP – Golden Channel II** Dark photon searches: $\eta \rightarrow \gamma A' \rightarrow \gamma + l^+ l^-$

- Motivations:
  - Possible cosmic ray excesses from dark matter annihilation
  - Structures anomalies in dwarf galaxies (*Pospelov and Ritz, 2008; Arkani-Hamed et al., 2008*)
  - The muon g-2 anomaly.
- Most accredited model has A' mass is the MeV-GeV range, coupling to to SM charged particles with a strength ~10-3-10-4 of that of the photon
- REDTOP could complement the new experiments at JLAB and Frascati with  $\gamma$  and e- beams.
- REDTOP can also make a clear statement on similar searches (γe+e-) of the proposed 17 MeV super-weak gauge boson (*S.Gardner at al., 2016, arXiv:1608.03591*) – [Golden channel IIa].
  - Below WASA sensitivity.

### **Dark photon searches**



**REDTOP – Golden Channel III** Search for light scalar mesons  $\eta \rightarrow \pi^0 H$ ;  $H \rightarrow \mu^+ \mu^- vs e^+ e^-$ 


- Potentially viable DM candidate, *Pospelov et al., Phys. Rev. D78, 115012, 2008.*
- Existence of this light scalar particle can significantly enhance this BR compared to the SM value (~10-9)
- REDTOP expected sensitivity is better than 10<sup>-10</sup>
  - Current limits are  $\sim 10^{-5} 10^{-6}$
- Implications for the  $R_p$  anomaly. [Golden channel IIIa]
  - Conventional methods (levels of muonic atoms and elastic scattering experiments) find a discrepancy of about  $7\sigma$ .

# Beam requirements and expected η yield

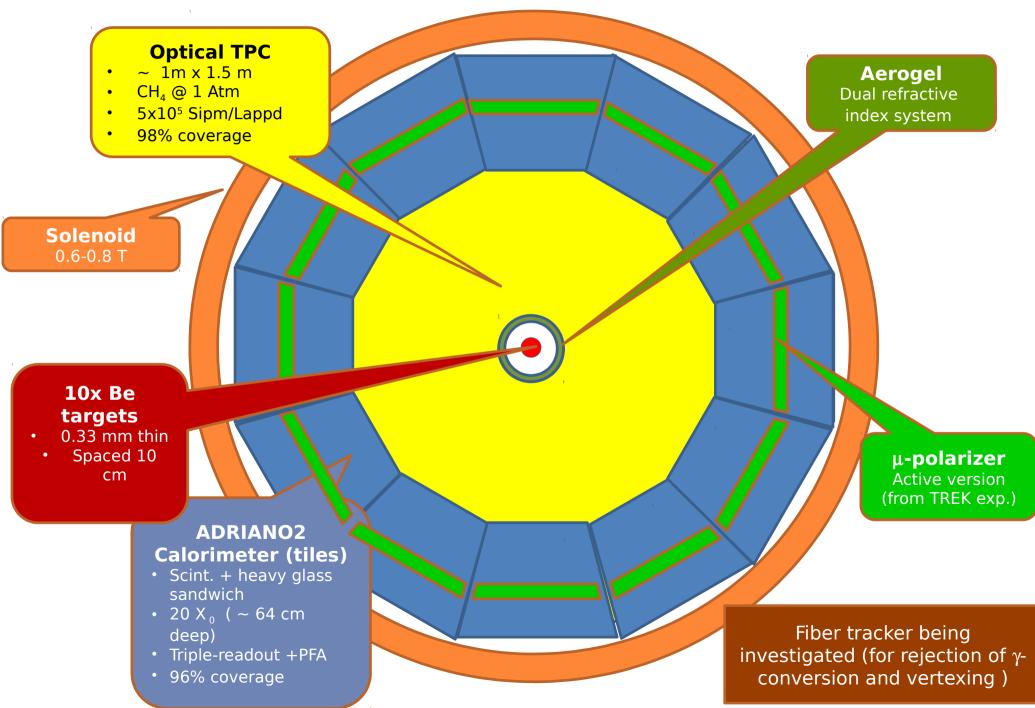
- Incident proton energy ~1.9 GeV
- Intensity ~1x10<sup>11</sup> POT/sec CW
  - Corresponds to beam power of 30 W
- Target system: 10x0.1 mm Nb or 10x0.33 mm Be spaced 10 cm apart
  - Nb is thinner (better vertex resolution) but makes more primary hadrons (multiplicity ~A<sup>1/3</sup>)
- Time between inelastic p interactions in one target: ~100 nsec
- Large beam spot size (~1 cm) with small divergence (<1°)
- p-inelastic production: 5x10<sup>8</sup> evts/sec
- Eta production:  $2.5 \times 10^6 \eta$ /sec or  $2.5 \times 10^{13} \eta$ /year

### **Accelerator scheme**

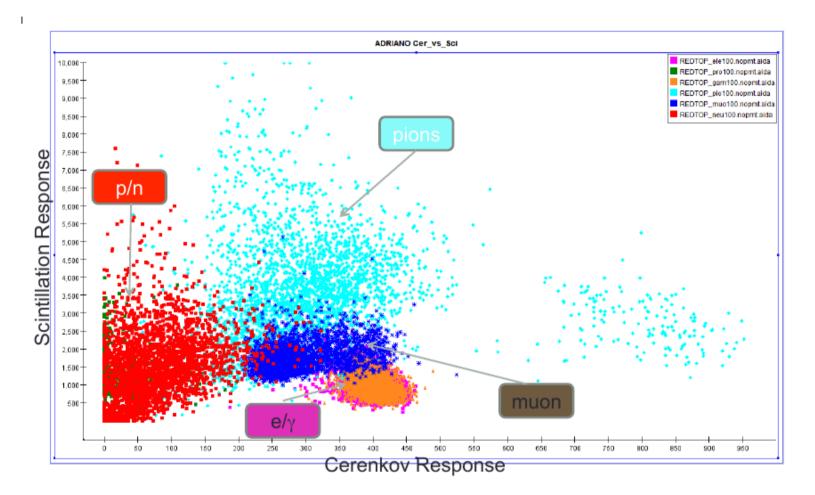
- Single p pulse from booster (4x10<sup>12</sup> p) injected in the Delivery Ring (former debuncher in p-bar production at Tevatron) at fixed energy (8 GeV)
- Energy is removed by adding 2 cavities (identical to the one planned for mu2e)
- Spare RF cavities already existing
- Slow extraction over ~40 sec
- Fermilab AD supportive in the project



### **Detection Techniques**


#### **Charged Tracks Detection**

- Use Cherenkov effect in an Optical-TPC for tracking charged particles
- Baryons and most pions are below Cherenkov threshold
- Electrons and most muons are detected and reconstructed
- Fiber-tracker for vertexing and rejection of gamma conversion (being investigated)


#### **Gamma Detection**

- Use ADRIANO calorimeter for reconstructing EM showers
- Resolution <5%/sqrt(E)</li>
- PID from dual-readout to disentangle showers from γ/μ/hadrons
- 96.5% coverage
- High granularity
- Good time resolution (200 psec) for high rate DAQ

ADRIANO: <u>A</u> <u>D</u>ual-<u>R</u>eadout<u>I</u>ntegrally<u>A</u>ctive <u>N</u>on-segmented <u>O</u>ption



### Dual-readout Calorimetry (ADRIANO)



PID @ 100 MeV

### PLAN

- Nov. 2017: EOI to PAC (now)
- 2018: LOI
- 2019: Full proposal to PAC
- 2018-2020: Detector R&D (could be shorter)
- P5 approval process
- 2021: Detector construction and commissioning
- 2022: Start of physics run for phase I
- Successive phases depend from results of phase I

### **REDTOP Running Phases**

- Intermediate phases (during detector R&D, OTPC only)
  - $p ^{3}Li \rightarrow ^{8}Be \rightarrow e^{+}e^{-}X$
  - $p^{2}H \rightarrow {}^{3}He e^{+}e^{-}$  (M.Viviani et al.)
  - Confirm 17 MeV bump in Hungary exp. (J.Feng at al., arXiv:1604.07411; A.Krasznahorkay at al., Phys. Rev. Lett. 116, 042501, 2016)
  - More possible beams (p/ $\mu$ /e)
- Phase I: η factory
- Phase II: η' factory
- Phase III: Dark photons radiating from muons
- Phase IV: Muon Scattering Experiment (optional)
- Phase V: Tagged REDTOP (at PIP-II)
- Phase VI: Rare Kaon Decays:  $K^+ \rightarrow \pi^+ \nu \nu$

### Summary

- The  $\eta/\eta'$  meson is an excellent laboratory for studying rare processes
- Existing world samples not sufficient for studying decays violating conservations laws
- REDTOP goal is to produce >  $2x10^{13} \eta$  mesons/year in phase I and ~ $2x10^{11} \eta$ '/year in phase II
- Three golden processes will be studied
  - CP violation via Dalitz plot mirror asymmetry
  - Dark photons
  - Scalar meson searches
- Many other processes can be studied
- New generation, super-fast detector techniques
- An exciting phase of detector R&D ahead
- Currently the collaboration is forming and working to a full proposal
- http://redtop.fnal.gov

## Thank you!



### **Backup slides**



$$\eta : \approx \frac{u\bar{u} + dd - 2s\bar{s}}{\sqrt{6}}$$
$$\eta' : \approx \frac{u\bar{u} + d\bar{d} + s\bar{s}}{\sqrt{3}}$$

#### η

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

Mass  $m = 547.862 \pm 0.017$  MeV Full width  $\Gamma = 1.31 \pm 0.05$  keV

#### C-nonconserving decay parameters

 $\begin{array}{ll} \pi^{+}\pi^{-}\pi^{0} & \text{left-right asymmetry} = (0.09 \substack{+0.11 \\ -0.12}) \times 10^{-2} \\ \pi^{+}\pi^{-}\pi^{0} & \text{sextant asymmetry} = (0.12 \substack{+0.10 \\ -0.11}) \times 10^{-2} \\ \pi^{+}\pi^{-}\pi^{0} & \text{quadrant asymmetry} = (-0.09 \pm 0.09) \times 10^{-2} \\ \pi^{+}\pi^{-}\gamma & \text{left-right asymmetry} = (0.9 \pm 0.4) \times 10^{-2} \\ \pi^{+}\pi^{-}\gamma & \beta \ (D\text{-wave}) = -0.02 \pm 0.07 \quad (S = 1.3) \end{array}$ 

#### CP-nonconserving decay parameters

 $\pi^+\pi^-e^+e^-$  decay-plane asymmetry  $A_\phi = (-0.6\pm 3.1) imes 10^{-2}$ 

#### Dalitz plot parameter

 $\begin{array}{ll} \pi^{0}\pi^{0}\pi^{0} & \alpha = -0.0318 \pm 0.0015 \\ \mbox{PARAMETER } \Lambda \mbox{ IN } \eta \rightarrow \ \mu^{+}\mu^{-}\gamma \mbox{ DECAY} = 0.719 \ \pm \ 0.014 \ \mbox{GeV}/c^{2} \end{array}$ 

| η DECAY MODES                              | Fraction (Γ <sub>i</sub> /Γ) | Scale factor/<br>Confidence level | р<br>(MeV/c) |
|--------------------------------------------|------------------------------|-----------------------------------|--------------|
|                                            | Neutral modes                |                                   |              |
| neutral modes                              | (72.12±0.34) %               | S=1.2                             | -            |
| $2\gamma$                                  | (39.41±0.20) %               | S=1.1                             | 274          |
| $3\pi^{0}$                                 | (32.68±0.23) %               | S=1.1                             | 179          |
| $\pi^0 2\gamma$                            | (2.56±0.22)×                 | 10-4                              | 257          |
| $2\pi^0 2\gamma$                           | < 1.2 ×                      | 10 <sup>-3</sup> CL=90%           | 238          |
| $4\gamma$                                  | < 2.8 ×                      | 10 <sup>-4</sup> CL=90%           | 274          |
| invisible                                  | < 1.0 ×                      | 10 <sup>-4</sup> CL=90%           | -            |
|                                            | Charged modes                |                                   |              |
| charged modes                              | (28.10±0.34) %               | S=1.2                             | -            |
| $\pi^{+}\pi^{-}\pi^{0}$                    | (22.92±0.28) %               | S=1.2                             | 174          |
| $\pi^+\pi^-\gamma$                         | ( 4.22±0.08) %               | S=1.1                             | 236          |
| $e^+e^-\gamma$                             | $(6.9 \pm 0.4) \times$       | 10 <sup>-3</sup> S=1.3            | 274          |
| $\mu^+\mu^-\gamma$                         | ( 3.1 $\pm$ 0.4 ) $\times$   |                                   | 253          |
| e+ e-                                      | < 2.3 ×                      | 10 <sup>-6</sup> CL=90%           | 274          |
| $\mu^+\mu^-$                               | ( 5.8 $\pm$ 0.8 ) $\times$   | 10-6                              | 253          |
| $2e^+2e^-$                                 | (2.40±0.22)×                 | 10-5                              | 274          |
| $\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$         | $(2.68\pm0.11) \times$       | 10-4                              | 235          |
| $e^+ e^- \mu^+ \mu^-$                      | < 1.6 ×                      | 10 <sup>-4</sup> CL=90%           | 253          |
| $2\mu^+ 2\mu^-$                            |                              | 10 <sup>-4</sup> CL=90%           | 161          |
| $\mu^{+}\mu^{-}\pi^{+}\pi^{-}$             | < 3.6 ×                      | 10 <sup>-4</sup> CL=90%           | 113          |
| $\pi^+ e^- \overline{\nu}_e + \text{c.c.}$ |                              | 10 <sup>-4</sup> CL=90%           | 256          |
| $\pi^+\pi^-2\gamma$                        | < 2.1 ×                      | 10-3                              | 236          |
| $\pi^+\pi^-\pi^0\gamma$                    | < 5 ×                        | 10 <sup>-4</sup> CL=90%           | 174          |
| $\pi^0 \mu^+ \mu^- \gamma$                 | < 3 ×                        | 10 <sup>-6</sup> CL=90%           | 210          |

| Charge conjugation (C), Parity (P),<br>Charge conjugation × Parity (CP), or<br>Lepton Family number (LF) violating modes |      |       |     |                    |        |     |  |
|--------------------------------------------------------------------------------------------------------------------------|------|-------|-----|--------------------|--------|-----|--|
| $\pi^{0}\gamma$                                                                                                          | С    | <     | 9   | $\times 10^{-5}$   | CL=90% | 257 |  |
| $\pi^{+}\pi^{-}$                                                                                                         | P,CP | <     | 1.3 | $\times 10^{-5}$   | CL=90% | 236 |  |
| $2\pi^{0}$                                                                                                               | P,CP | <     | 3.5 | × 10 <sup>-4</sup> | CL=90% | 238 |  |
| $2\pi^0\gamma$                                                                                                           | С    | <     | 5   | $\times 10^{-4}$   | CL=90% | 238 |  |
| $3\pi^0\gamma$                                                                                                           | С    | <     | 6   | × 10 <sup>-5</sup> | CL=90% | 179 |  |
| $3\gamma$                                                                                                                | С    | <     | 1.6 | × 10 <sup>-5</sup> | CL=90% | 274 |  |
| $4\pi^{0}$                                                                                                               | P,CP | <     | 6.9 | × 10 <sup>-7</sup> | CL=90% | 40  |  |
| $\pi^{0}e^{+}e^{-}$                                                                                                      | С    | [f] < | 4   | $\times 10^{-5}$   | CL=90% | 257 |  |
| $\pi^{0}\mu^{+}\mu^{-}$                                                                                                  | С    | [f] < | 5   | × 10 <sup>-6</sup> | CL=90% | 210 |  |
| $\mu^+ e^- + \mu^- e^+$                                                                                                  | LF   | <     | 6   | × 10 <sup>-6</sup> | CL=90% | 264 |  |

### $\eta$ Samples – Present and future

|                                   | Technique                                            | Total η                                            |
|-----------------------------------|------------------------------------------------------|----------------------------------------------------|
| CB @AGS                           | πp → ηn                                              | 107                                                |
| CB @MAMI-B                        | γρ → ηρ                                              | 2x10 <sup>7</sup>                                  |
| CB @MAMI-C                        | γp → ηp                                              | 6x10 <sup>7</sup>                                  |
| KLOE @DAFNE                       | $e^+e^- \rightarrow \Phi \rightarrow \eta\gamma$     | 5x10 <sup>7</sup>                                  |
| WASA @COSY                        | $pp \rightarrow \eta pp  pD \rightarrow \eta ^{3}He$ | >10 <sup>9</sup> (unt.) 3x10 <sup>7</sup> (tagged) |
| CB @MAMI 10 wk<br>(proposed 2014) | γp → ηp                                              | 3x10 <sup>8</sup>                                  |
| Phenix @RHIC                      | d Au → ηX                                            | 5x10 <sup>9</sup>                                  |
| Hades @GSI                        | $pp \rightarrow \eta pp  p Au \rightarrow \eta X$    | 4.5x10 <sup>8</sup>                                |
| Near future samples:              |                                                      |                                                    |
| GlueX @JLAB<br>(just started)     | $\gamma p \rightarrow \eta p \rightarrow neutrals$   | 4.5x10 <sup>7</sup> /year                          |
| JEF @JLAB<br>(recently approved)  | $\gamma p \rightarrow \eta X \rightarrow neutrals$   | 3.9x10⁵/day                                        |
| REDTOP @FNAL<br>(proposing)       | p Be → ηX                                            | 2.5x10 <sup>13</sup> /year                         |

#### **BSM Physics Program (η and η' factory)**

#### C, T, CP-violation

- □ CP Violation via Dalitz plot mirror asymmetry:  $\eta \rightarrow \pi^{\circ} \pi^{+} \pi$
- □ CP Violation (Type I P and T odd , C even):  $\eta \rightarrow 8\gamma$
- □ CP Violation (Type II C and T odd , P even):  $\eta \rightarrow \pi^{\circ}$  I+I **and**  $\eta \rightarrow 3\gamma$
- □ Test of CP invariance via  $\mu$  longitudinal polarization:  $\eta \rightarrow \mu^+\mu^-$
- □ Test of CP invariance via  $\gamma^*$  polarization studies:  $\eta \rightarrow \pi^+\pi^-e^+e^-$  and  $\eta \rightarrow \pi^+\pi^-\mu^+\mu^-$
- □ Test of CP invariance in angular correlation studies:  $\eta \rightarrow \mu^+\mu^-e^+e^-$
- □ Test of T invariance via  $\mu$  transverse polarization:  $\eta \rightarrow \pi^{\circ}\mu^{+}\mu^{-}$  and  $\eta \rightarrow \gamma\mu^{+}\mu^{-}$
- □ CPT violation:  $\mu$  polariz. in  $\eta \rightarrow \pi^+ \mu^- v vs \eta \rightarrow \pi \mu^+ v$  and  $\gamma$  polarization in  $\eta \rightarrow \gamma \gamma$

#### **Other discrete symmetry violations**

- □ Lepton Flavor Violation:  $\eta \rightarrow \mu^+e^- + c.c.$
- □ Double lepton Flavor Violation:  $\eta \rightarrow \mu^+ \mu^+ e^- e^- + c.c.$

#### **BSM Physics Program (η and η' factory)**

#### New particles and forces searches

- □ Scalar meson searches (charged channel):  $\eta \rightarrow \pi^{\circ} H$  with  $H \rightarrow e^+e^-$  and  $H \rightarrow \mu^+\mu^-$
- □ Dark photon searches:  $\eta \rightarrow \gamma A'$  with  $A' \rightarrow l^+l^-$
- Protophobic fifth force searches :  $\eta \rightarrow \gamma X_{17}$  with  $X_{17} \rightarrow e^+e^-$
- □ New leptophobic baryonic force searches :  $\eta \rightarrow \gamma B$  with  $B \rightarrow e^+e^-$  or  $B \rightarrow \gamma \pi^{\circ}$
- □ Indirect searches for dark photons new gauge bosons and leptoquark:  $\eta \rightarrow \mu^+\mu^$ and  $\eta \rightarrow e^+e^-$
- □ Search for true muonium:  $\eta \rightarrow \gamma(\mu^+\mu^-)|_{2M_{\mu}} \rightarrow \gamma e^+e^-$

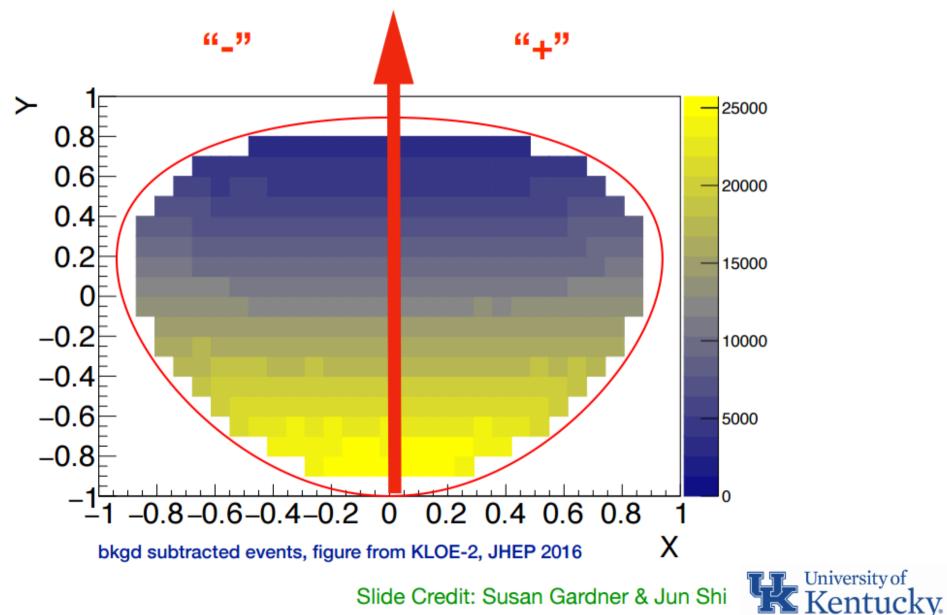
#### **Other Precision Physics measurements**

- Proton radius anomaly:  $\eta \rightarrow \gamma \mu^+ \mu^- vs \quad \eta \rightarrow \gamma e^+ e^-$
- □ All unseen leptonic decay mode of  $\eta / \eta$  ' (SM predicts 10<sup>-6</sup> -10<sup>-9</sup>)

#### **BSM Physics Program (η and η' factory)**

#### **Non**- $\eta/\eta'$ **based BSM Physics**

- □ Dark photon and ALP searches in Drell-Yan processes: qqbar  $\rightarrow$  A'/a  $\rightarrow$  I+I-
- □ ALP's searches in Primakoff processes:  $p Z \rightarrow p Z a \rightarrow I^+I^-$  (F. Kahlhoefer)
- □ Charged pion and kaon decays:  $\pi + \rightarrow \mu^+ v A' \rightarrow \mu^+ v e^+ e^-$  and  $K + \rightarrow \mu^+ v A' \rightarrow \mu^+ v e^+ e^$  $e^+ e^-$
- □ Neutral pion decay:  $\pi^{\circ} \rightarrow \gamma A' \rightarrow \gamma e^+e^-$


#### **Non-BSM Physics Program (η and η' factory)**

#### High precision studies on low energy physics

- Nuclear models
- Chiral perturbation theory
- Non-perturbative QCD
- Isospin breaking due to the u-d quark mass difference
- Octet-singlet mixing angle
- ππ interactions
- Electromagnetic transition form-factors (important input for g-2)
- Lots of other bread&butter physics

### On CP violation (CPV) in $\eta \to \pi^+ \pi^- \pi^0$ decay

Terms in |A|<sup>2</sup> that are odd in X generate a charge (+/-) asymmetry Can also fit Dalitz distribution for these X odd terms



### **Theoretical Analysis:** $\eta \rightarrow \pi^+ \pi^- \pi^0$

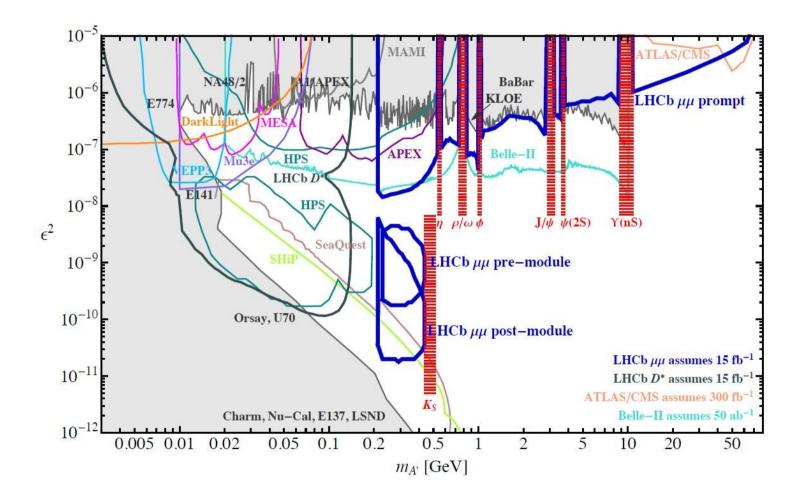
C and CP violation poorly constrained in flavor diagonal processes

New way to construct CPV amplitudes in  $\eta \to \pi^+ \pi^- \pi^0$ 

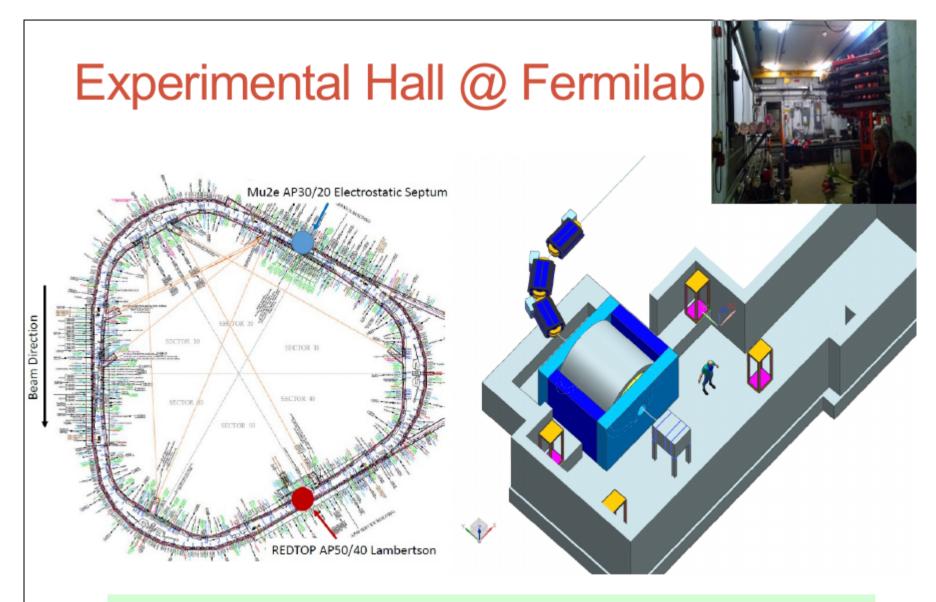
- Use NLO ChPT result & project it to the isospin basis of two pions (I=0,1,2) [Gasser & Leutwyler, 1985; note also Anisovich & Leutwyler, 1996; Bijnens & Ghorbani, 2007]
- Add CP violating terms controlled by "a" and "b"

$$A(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s) + a[(s-u)M_1(t) - (s-t)M_1(u)] + b[M_2(t) - M_2(u)]$$

- Expand 8 CPV interferences in |A(s,t,u)|<sup>2</sup> in terms of (X, Y)=(0,0)
- Can fit the Dalitz plot to get Re(a), Im(a), Re(b), Im(b) and/or study charge asymmetries

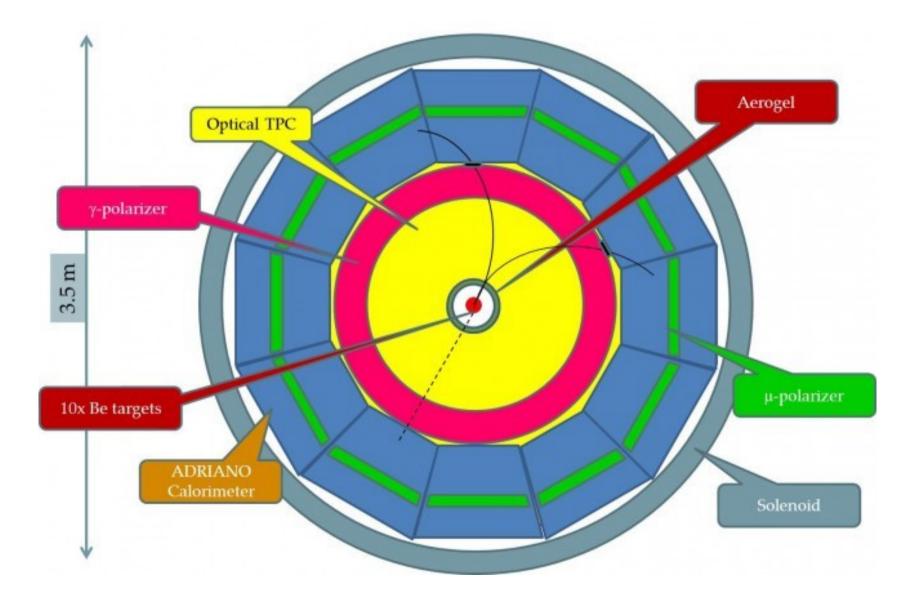

Preliminary analysis shows the largest CPV contributions could come from the interference with  $M_0(s)$ 

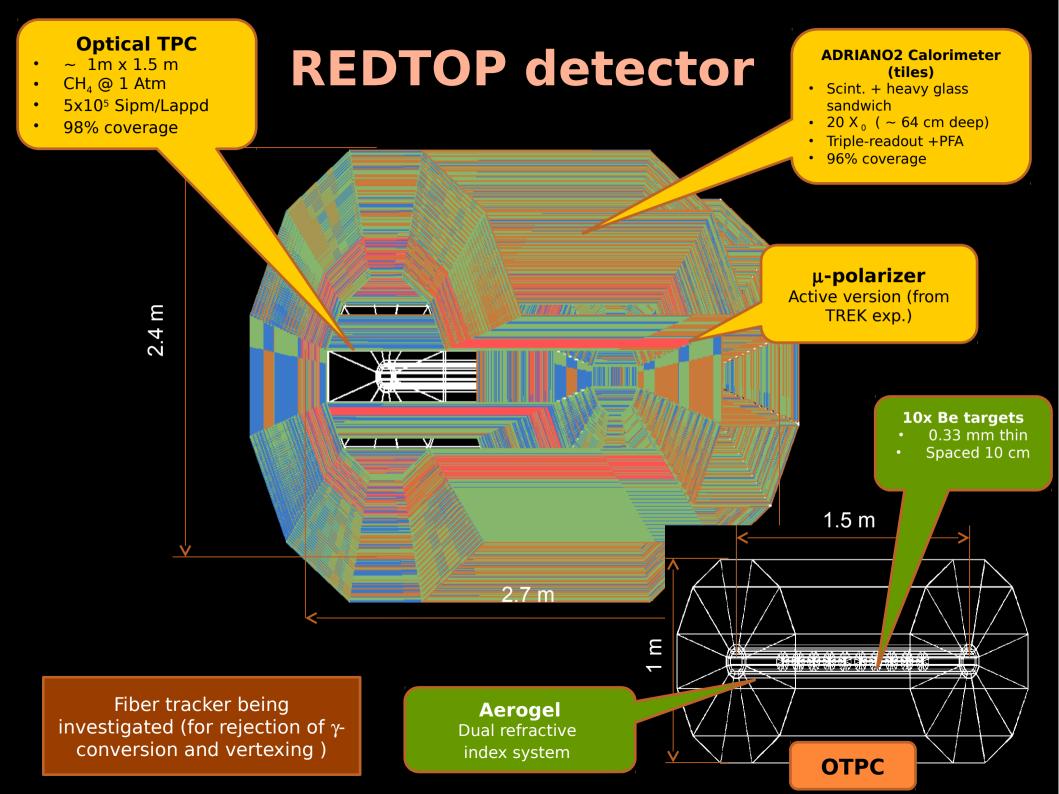
[Gardner & Shi, 2017, to appear]


Slide Credit: Susan Gardner & Jun Shi



### Dark photon searches (near future)





Ilten et al., Hep-ph 1603.08926



Deacceleration of 8 GeV proton Booster beam followed by slow extraction

### **REDTOP Detector Concept**





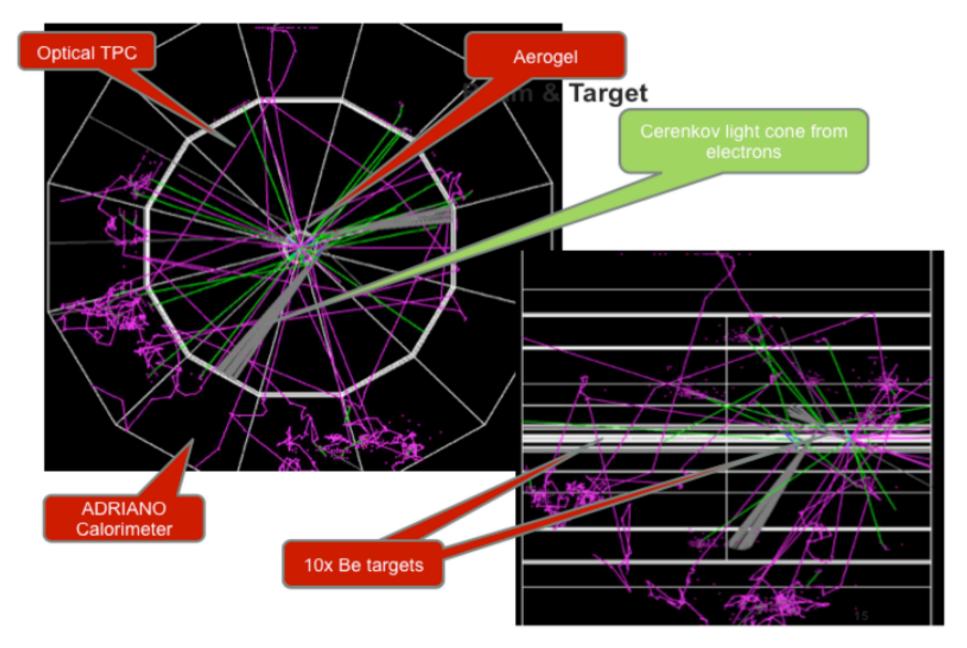
#### • 10x Be targets

- 0.33 mm thin
- Spaced 10 cm

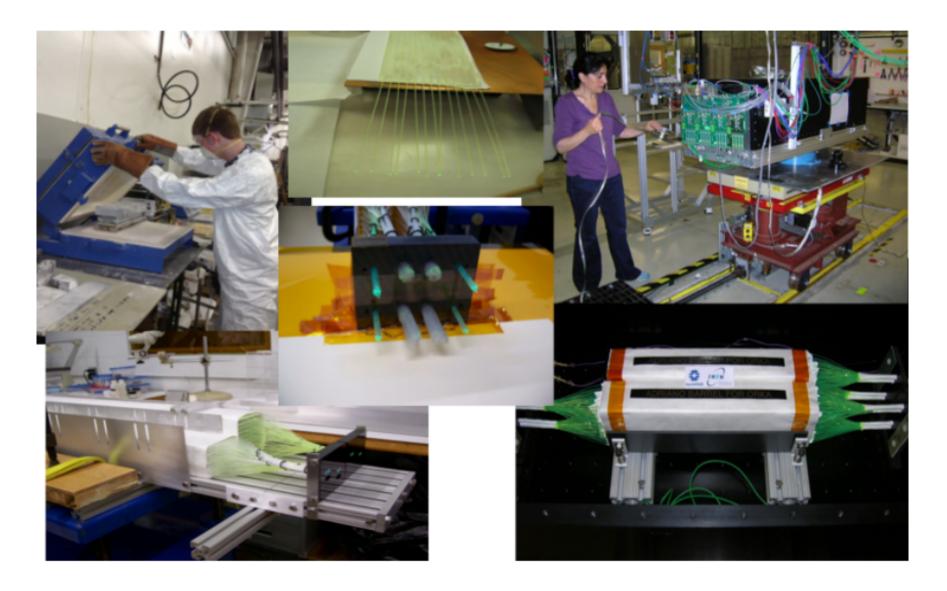
#### Optical TPC

- Measures momentum and trajectory of charged tracks
- Cherenkov light is used
- Tested at FNAL by T1059 (Frisch et al.) successful proof of principle in 2015
- First radiator: Aerogel, dual refractive index system
- Low pressure N<sub>2</sub>
- ~1 mm x 1.5 m
- ~105 SiPM
- 98% coverage
- Photon polarimeter (optional)

#### ADRIANO Calorimeter


- PID and energy measurement (res. ~5%/sqrt(E))
- Tested at FNAL by T1015
- Use of Cherenkov light and Scintillation light (dual readout mode)
- Scintillator + heavy glass sandwich
- 20 X<sub>0</sub> (~64 cm deep)
- 96% coverage
- High granularity
- Good time resolution (~200 psec) for high rate DAQ

#### Muon polarimeter


- From TREK exp.
- Detect e<sup>+</sup>e<sup>-</sup> when a muon is stopped in the calorimeter to measure polarization
- Array of plastic scintillators
- Solenoid
  - ~0.6-0.8 T

- Fiber tracker
  - Vertexing
  - Rejection of gamma conversion
- Trigger
  - Reduces the rate of events recorded to  $\sim 2x10^4$  Hz
  - 3 level system
  - L0 (OTPC+ADRIANO-Ch): rejection factor 100
  - L1 (OTPC+ADRIANO for PID and γ-conversion rejection): rejection factor 100
  - L2 (reconstruction with CPUs): rejection factor >1
- Performances studies in progress

### **REDTOP Detector**

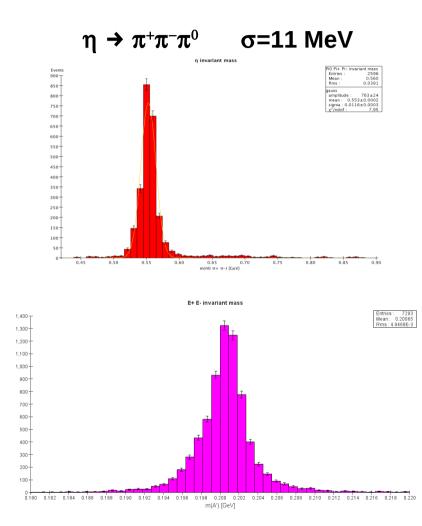


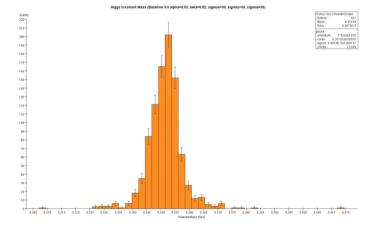
### **Detector R&D (Calorimetry)**



### **Monte Carlo Simulations**

- Background rejection
  - Photons from  $\pi^0$  decays converting in the beam pipe and aerogel
  - Add a tracker upstream (under study)
- Reconstructed invariant mass resolution
  - (poor) reconstruction of the impinging point of a photon in the calorimeter
  - More finely segmented calorimeter?
- L0 trigger rejection
  - Eta production x-section  $\sim 10^2$  smaller that the full inelastic x-section of p-Be
  - Rejection of ~4 orders of magnitute
  - Fiber tracker, fast timing (~50 psec resol.), sufficient granularity


#### Work in progress


### **Physics/Detector Issues**

- Background
  - Rejection of multi-pion events
  - Mass resolution for di-leptons for bump hunting
  - $\eta$ -tagging
- ADRIANO → ADRIANO2
  - Add tiles directly coupled to SiPM
- Sensors for O-TPC
  - Need to sustain >10<sup>11</sup> n/cm<sup>2</sup>
  - LAPPD as a possible choice
- Fiber tracker (LHCb style)
  - Radiation damage
- Trigger
  - Need to recognize Cherenkov rings at L1
  - L0/L1 from topological analysis of showers (PFA)
- Accelerator physics issues
- R&D needed

### **Invariant masses**

• Reconstracted invariant masses from similated events (Ilcsim)





 $\eta \rightarrow \gamma A' \quad \sigma(e^+e^-)=3 \text{ MeV}$ 

 $\eta \rightarrow \pi^{0}H$   $\sigma(\mu^{+}\mu^{-})=4 \text{ MeV}$ 

### **Trigger & DAQ**

- Requirement:
  - 2.5x10¹³ η/yr → 2.5x10<sup>6</sup> η/sec → 2.5x10<sup>8</sup> p-Be inelastic collisions/sec
- Trigger task:
  - Reduce this rate by a factor 10<sup>4</sup> (at least)

| Level | Algorithm                                  | Detectors                       | Hardware       | Rejection<br>factor |
|-------|--------------------------------------------|---------------------------------|----------------|---------------------|
| LO    | $\Sigma$ OTPC &&<br>ADRIANO-Cher.          | OTPC, ADRIANO                   | Fast sum       | 100                 |
| L1    | Lepton pairs ID , $\gamma$ conv. rejection | OTPC, ADRIANO,<br>Fiber Tracker | FPGA           | 100                 |
| L2    | Reconstruction                             | All                             | 2000 CPU cores | >1                  |

Expected data rates: <200 MB/sec from L2  $\rightarrow$  <2 PB/yr (event size ~100 kb)

### A different Redtop in the Fermilab area



http://www.illinoiswildflowers.info/grasses/plants/redtop.htm